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Proof. (Lemma 1) Consider a given model graph G uniquely defined by its binary adjacency
matrix. Recall that the adjacency matrix has entry 1 in row i and column j if and only if
there is a directed edge from i to j in G. Thus, each entry (i, j) in the adjacency matrix
corresponds to the family relation of the ordered pair of nodes (i, j). Value 1 in entry (i, j)
is equivalent to the fact that i is a parent of j, while entry 0 is equivalent to the fact that i
and j are cousins.

Proof. (Lemma 2) Assume the contrary. We will show by example that this assumption
does not hold. Let A and B be two LEMs on G = {1, 2}, one of which has the nodes 1 and
2 in a parent-child relation, and another has 1 and 2 as cousins (illustrated by example in
Figure 2A-D in the main text). Consider the two single node perturbation experiments on
these genes, {1} and {2}, where the first experiment targets gene 1 and second gene 2 . The
states matrix for model A with these experiments is

SA =

[
1 0
1 1

]
,

while the states matrix for B is

SB =

[
1 0
0 1

]
.

Consider the parameters βB = [β1, β2]
T and cB = c for model B. Model A with parameters

βA = [β1, β2 − β1]T and the same precision parameter cA = c will have equal likelihood.
Indeed, with those parameter values SAβA = SBβB = [β1, β2]

T .

Proof. (Lemma 3) Assume the contrary. We will show by example that this assumption
does not hold. As illustrated in Figure 2E-G in the main text, we consider two LEMs on
G = {1, 2}, one of which has nodes 1 and 2 in a parent-child relation, and another has 1 and
2 as cousins. Consider the only possible double perturbation experiment, {1, 2}, where the
two nodes are perturbed at the same time. In this case, for both models, the states matrix
will be the same and will consist of a single row, S = [1, 1]. Thus for any contribution vector
[β1, β2]

T and precision c, we will have SAβ = SBβ = Sβ = β1 + β2, and for cA = cB = c the
likelihood of the two different models will be the same.

Proof. (Theorem 1) By Lemma (1), to uniquely identify a LEM on G, for each pair of
nodes in G their family relation needs to be specified. For any given pair of nodes 1, 2 , there
are two general ways in which an alternative model can be wrong regarding their relation:

error (1) 1 and 2 are in a parent-child relation, but are taken for cousins, or vice versa,

error (2) 2 is a parent of 1 , but is taken for a child of 1 , or vice versa.

We show that with both perturbations of all single and all pairs of nodes in G, i.e., also both
single and pairwise perturbations of 1 and 2 , none of these two errors is possible.
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Figure 1. Alternative LEMs with regard to relation between 1 and 2 .

We will consider the three alternative types of LEMs, A, B and C, presented in Figure 1,
in which genes 1 and 2 can be related to each other in different ways. In model A, 2 is a
parent of 1 , and their corresponding contribution parameters are βA1 , and βA2 . This model
is presented in Figure 1A. Model A corresponds to a general scenario, where 1 and 2 can be
a part of a larger graph, with a set of nodes D3 which are descendants of node 1 and a set
of nodes D4\3 which are descendants of 2 but do not belong to D3 (by transitive closure D3

is a subset of all descendants of 2 ). Whether nodes 1 or 2 have parents is irrelevant for our
discussion. Denote the sum of contributions of descendants of node 1 as βA3 =

∑
i[i ∈ D3]βi,

where [·] represents the indicator function. The sum of contributions of descendants of 2
in D4\3 is denoted βA4 . Recall that (Se)

T denotes the row vector of the states matrix for

experiment e. From Fact 1, the entries of SAβA for model A for the set of single and double
perturbation experiments on 1 and 2 are given by

(SA
{1})

TβA = βA1 + βA3 (1)

(SA
{2})

TβA = βA1 + βA2 + βA3 + βA4 (2)

(SA
{1,2})

TβA = βA1 + βA2 + βA3 + βA4 . (3)

In another LEM, denoted B and presented in Figure 1B, 1 and 2 are cousins. In this
model, node 1 has contribution βB1 , while 2 has contribution βB2 . Their sets of descendants
may overlap. D0 denotes the set of overlapping descendants of 1 and 2 in B, while D3\0 =
D3 \ D0 and D4\0 = D4 \ D0. The sums of corresponding descendant contributions are

denoted βB0 , βB3 , and βB4 . The entries of SBβB for model B for the set of single and double
perturbation experiments are given by

(SB
{1})

TβB = βB1 + βB3 + βB0 , (4)

(SB
{2})

TβB = βB2 + βB4 + βB0 , (5)

(SB
{1,2})

TβB = βB1 + βB2 + βB3 + βB4 + βB0 . (6)

(7)

Finally, as the third possibility, in LEM C, presented in Figure 1C, 1 is a parent of
2 , and their contributions are denoted βC1 , and βC2 , respectively. In this model, the set of
descendants of 2 is denoted D3, and the set of descendants of 1 , not belonging to D3, is
denoted D4\3. The sum of contributions of descendants of 2 in D3 is denoted βC3 , while the

sum of contributions of descendants of 1 contained in D4\3 is denoted βC4 . For this model,
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the expected effects with single and double node perturbations of 1 and 2 are the following

(SC
{1})

TβC = βC1 + βC2 + βC3 + βC4 (8)

(SC
{2})

TβC = βC2 + βC3 (9)

(SC
{1,2})

TβC = βC1 + βC2 + βC3 + βC4 . (10)

We will now exclude that error (1) occurs due to equal likelihoods. Assume first that LEM
A and the alternative LEM B (Figure 1) have equal likelihood. To obtain equal likelihood,
SAβA = SBβB and cA = cB must be satisfied. Assume cA = cB. Consider two experiments:
single perturbation of 2 , and double perturbation of 1 and 2 . For the two models A and B
to have equal likelihood with this set of experiments, we should have

(SA
{2})

TβA = βA1 + βA2 + βA3 + βA4 = (SB
{2})

TβB = βB2 + βB4 + βB0

(SA
{1,2})

TβA = βA1 + βA2 + βA3 + βA4 = (SA
{1,2})

TβB = βB1 + βB2 + βB3 + βB4 + βB0

By subtracting the first from the second equation, this amounts to

βB1 + βB3 = 0,

which contradicts the model assumption that βB > 0.
Note that model C in Figure 1 is symmetric to A, and contradiction to the assumption

that models B and C could have equal likelihoods would follow the same lines of argumen-
tation.

We will now exclude that error (2) occurs due to equal likelihoods. Assume first that
LEM A, where 2 is a parent of 1 and LEM C, where 1 is a parent of 2 have equal likelihood,
and cA = cC . Consider two single node perturbations, of 1 and of 2 . For the two models A
and C to have equal likelihoods we should have

(SA
{1})

TβA = βA1 + βA3 = (SC
{1})

TβAβC1 + βC2 + βC3 + βC4

(SA
{2})

TβA = βA1 + βA2 + βA3 + βA4 = (SC
{2})

TβCβC2 + βC3 .

This is equivalent to
βA2 + βA4 = −(βC1 + βC4 ),

which contradicts the assumption that βA > 0 and βC > 0.
In summary, we have shown that for any pair of nodes 1, 2 , and with both single and

double experiments on those nodes, their family relation can uniquely be estimated from the
data, in the sense that there exists no alternative model with equal likelihood where this
relation is different. Thus, by Lemma (1), the LEM is identifiable.


